Get in touch with us

With our headquarter in Germany and sales representatives worldwide, we are happy to assist and consult you to find the best superconductor solution for your application.

Our contact persons at the German Headquarter

Dr. Markus Bauer
Vice President
Business Development

Sara Landvogt
Sales

THEVA
Dünnschichttechnik GmbH
Rote-Kreuz-Str. 8
85737 Ismaning
Germany
Phone +49 89 92 33 46-0
info@theva.com
www.theva.com

Our sales representatives worldwide

China: Sinocon (info@sinocon.com.cn)
Korea: AMS Korea (sales@amskorea.net)
Japan: K&R Creation (info@k-and-r.co.jp)
Taiwan: UMAT (ejong@umat.com.tw)

THEVA Pro-Line: HTS wires produced by e-beam PVD

Thin. Robust. Efficient.

- Excellent performance
- Long lengths
- Competitive pricing
Pro-Line Series: Highest performance and reliability for different applications – made in Germany

THEVA offers with Pro-Line a wide range of superconducting wires (coated conductors) for cables, rotating machines or high field magnets

<table>
<thead>
<tr>
<th>Specification for THEVA Pro-Line</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate thickness</td>
<td>50 µm / 100 µm</td>
</tr>
<tr>
<td>Width</td>
<td>12 mm, 4 or 6 mm upon request</td>
</tr>
<tr>
<td>Piece length</td>
<td>up to 300 m</td>
</tr>
<tr>
<td>Critical current (77 K, s.f.)</td>
<td>up to 420 A /cm width</td>
</tr>
<tr>
<td>Copper surround coating</td>
<td>up to 10 µm per side</td>
</tr>
<tr>
<td>Copper lamination thickness</td>
<td>100 µm on HTS side</td>
</tr>
<tr>
<td>Solder coating</td>
<td>upon request</td>
</tr>
<tr>
<td>Joint resistance</td>
<td>60 nΩ * cm² (typical)</td>
</tr>
</tbody>
</table>

Copper coating

THEVA uses PVD for the copper coating

- Highest geometrical shape accuracy
- Up to 10 µm thickness
- No dogboning

Magnetic field performance

Below, on the left side you see the lift factor for B // c and the corresponding I_c for a tape with 500 A @ 77 K, self field. B // c represents the minimum value. Higher lift factors are possible, depending on the field angle. High-field measurements at 4.2 K, done by KIT at LNCMI in Grenoble, are shown below on the right side.